141.5-142.5 °C (EtOAc); ¹⁷ ¹H NMR (CDCl₃) δ 6.03 (dd, J =3.7, 11.5 Hz, 1 H, =CH-), 3.74 and 3.57 (s, 3 H, OCH₃); ¹³C NMR (CDCl₃) δ 167.0 (s, C-3), 152.9 (d, C-9), 132.7 (s, C-1), 97.3 (s, C-2). This compound has been described as the cis, cisisomer by Brannock et al. (mp 109.5-110.5 °C),8 Paquette and Begland (mp 139-141 °C), is and Hirsch and Cross (mp 140-142 °C). 19 Compound 3d, mp 102-106 °C (Et₂O), was characterized by its ¹H NMR [(CDCl₃) δ 5.82 (dd, J = 5.0, 12.2 Hz, 1 H, =CH-), 3.72 and 3.57 (s, 3 H, OCH₃)]²⁰ and ¹³C NMR spectrum [(CDCl₃) δ 163.7 (s, C-3), 147.3 (d, C-10), 132.7 (s, C-1), 98.0 (s, C-2)]. From the reaction of 1-(1-cyclopenten-1yl)pyrrolidine with DMAD in diethyl ether we obtained dimethyl 3-(1-pyrrolidinyl)-cis,cis-2,7-cycloheptadiene-1,2-dicarboxylate⁸ without observing the corresponding cis, trans isomer by 'H NMR spectroscopy as an intermediate, possibly because of a fast isomerization of the cis, trans to the cis, cis isomer.

When the thiocin 3b was heated in toluene for 4 h at 100 °C in the dark the cis, cis-isomer 4b was isolated in a 44% yield as a crystalline solid, mp 169-170 °C (toluene). Upon irradiation at room temperature, however, 3b isomerized to dimethyl 3,8dihydro-6-(1-pyrrolidinyl)-2H-thiocin-4,5-dicarboxylate (5). Under the prevailing reaction conditions both isomers were not interconvertible.²³ Therefore, we concluded that 5 has to be formed by a photochemical [1,5] hydrogen shift. As can be seen from Dreiding models and from the X-ray structure of 3b, the 4π system in 3b is twisted, thus making the antarafacial hydrogen shift sterically possible. To our knowledge this is the first example of a photochemical [1,5] hydrogen shift in a cyclic system.²⁵

Our results clearly show that the ring opening of cis-fused 3-aminocyclobutenes proceeds in a conrotatory mode, giving (strained) cis, trans-cycloalkadienes. The rate of isomerization and the relative equilibrium concentrations of 2 and 3 at ambient temperature depend on the ring size. These results make a revision of the structural assignment of a number of compounds obtained by reaction of enamines and DMAD^{8,18,19,22} necessary. Also the stereochemistry published of several other compounds 18,26 might be incorrect. Moreover the formation of "abnormal" ring opening products like 5 that have previously been reported^{24,27,28} can be rationalized in terms of the intermediacy of a cis, trans isomer and a subsequent [1,5] hydrogen shift.

Registry No. 1a, 1125-99-1; 1b, 3417-64-9; 1c, 14092-11-6; 1d, 942-81-4; 2a, 3603-83-6; 3a, 83585-93-7; 3b, 83585-90-4; 3c, 42205-54-9; 3d, 42205-55-0; 4a, 83585-94-8; 4b, 83585-91-5; 5b, 83585-92-6; DMAD,

Supplementary Material Available: Tables of atomic positional and thermal parameters, interatomic distances and angles, and a list of observed and calculated structure factors (30 pages). Ordering information is given on any current masthead page.

General Synthesis of Chiral Borinic Acid Esters. Asymmetric Synthesis of Acyclic Ketones via Asymmetric Hydroboration-Carbenoidation

Herbert C. Brown,* Prabhakar K. Jadhav,1 and Manoj C. Desai¹

> Richard B. Wetherill Laboratory, Purdue University West Lafayette, Indiana 47907 Received August 4, 1982

Asymmetric hydroboration of prochiral alkenes with monoisopinocampheylborane in the molar ratio of 1:1, followed by a second hydroboration of nonprochiral alkenes with the intermediate dialkylboranes, provides the chiral mixed trialkylboranes. Treatment of these trialkylboranes with acetaldehyde under mild conditions results in the selective, facile elimination of the 3-pinanyl group, providing the corresponding chiral borinic acid esters with enantiomeric purities of 73-100% ee. Treatment of these intermediates with base and dichloromethyl methyl ether provides the chiral ketones, following oxidation of the intermediates, with enantiomeric purities as high as 90%.

The asymmetric synthesis of ketones has been extensively studied in the past decade.^{2,3} The activity, however, is achieved primarily by the enantioselective alkylation of appropriate ketones. In the case of enantioselective alkylation of acyclic ketones, the most favorable results are realized only in the alkylation of symmetrical ketones, thereby limiting seriously the generality of the method. The present study reports a new, more general approach for the asymmetric synthesis of acyclic ketones involving asymmetric hydroboration-carbenoidation, as well as the first general synthesis of chiral borinic acid esters.

Asymmetric hydroboration has now been known for more than 2 decades,4 and many applications of the reaction have been reported.⁵ However, the high asymmetric induction achieved in the reaction has not hitherto been utilized for the asymmetric formation of carbon-carbon bonds.

It is known that under vigorous conditions trialkylboranes react with benzaldehyde to form the borinic acid esters.^{6,7} Recently this reaction has been applied for a direct chiral synthesis of boronic esters. However, the selective reaction of aldehydes with mixed trialkylboranes is not known.

Consequently, the strategy of the present method depends upon the successful synthesis of chiral mixed trialkylboranes, followed by selective elimination of the starting chiral auxiliary, the 3pinanyl group, from the boron intermediate. Thus, hydroboration of trans-2-butene with monoisopinocampheylborane⁹⁻¹¹ (IpcBH₂) in the molar ratio of 1:1 results in the formation of 3-pinanyl-2butylborane, which then rapidly hydroborates 1-pentene at -25 °C to provide the corresponding chiral mixed trialkylborane.

⁽¹⁷⁾ Before recrystallization the melting point was 105–108 °C. Recrystallization did not effect the $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectrum.

⁽¹⁸⁾ Paquette, L. A.; Begland, R. W. J. Am. Chem. Soc. 1966, 88, 4685-4692.

⁽¹⁹⁾ Hirsch, J. A.; Cross, F. J. J. Org. Chem. 1971, 36, 955-960.

⁽²⁰⁾ Paquette and Begland¹⁸ have reported the ¹H NMR ((CCl₄) δ 5.68 $(q, J = 4.5 \text{ and } 12.5 \text{ Hz}, 1 \text{ H}, = \text{CH}-), 3.60 \text{ and } 3.42 \text{ (OCH}_3))$ and they have assigned the cis, cis configuration.

⁽²¹⁾ Reaction of 1-(1-cyclohexen-1-yl)piperidine and -morpholine with DMAD gave the corresponding cyclobutenes as oils.²² At room temperature these compounds produce slowly the cis,cis-2,8-cyclooctadienes, but the cor-

responding cis, trans-isomers could not be detected by ¹H NMR spectroscopy. (22) Huebner, C. F.; Dorfman; L., Robison, M. M.; Donoghue, E.; Pierson,

<sup>W. G.; Strachan, P. J. Org. Chem. 1963, 28, 3134-3140.
(23) Reinhoudt and Kouwenhoven²⁴ have described the formation of the</sup> 6-(1-piperidinyl) analogues of both isomers showing ¹H NMR spectra very similar to the spectra of our compounds. They have proposed that the 6-(1piperidinyl) analogue of 5 is formed by a thermal [1,5] hydrogen shift con-

current with the ring opening.
(24) Reinhoudt, D. N.; Kouwenhoven, C. G. Tetrahedron Lett. 1973, 3751-3754; Reinhoudt, D. N.; Kouwenhoven, C. G. Recl. Trav. Chim. Pays-Bas 1973, 92, 865-878.

⁽²⁵⁾ Anh, N. T. "Die Woodward-Hoffmann Regeln und ihre Anwendung"; Verlag Chemie: Weinheim, 1972; p 78.

⁽²⁶⁾ Riviere, M.; Paillous, N.; Lattes, M. A. Bull. Soc. Chim. Fr. 1974, 1911-1916.

⁽²⁷⁾ Yoshii, E.; Kimoto, S. Chem. Pharm. Bull. 1969, 17, 629-631.
(28) Stork, G.; Macdonald, T. L. J. Am. Chem. Soc. 1975, 97, 1264-1265.

⁽¹⁾ Postdoctoral research associates on Grant 2 R01 GM 10937-20 from the National Institutes of Health. The support from NIH is gratefully acknowledged.

^{(2) (}a) Meyers, A. I.; Williams, D. R.; Druelinger, M. J. J. Am. Chem. Soc. 1976, 98, 3032. (b) Hashimoto, S.; Koga, K. Chem. Pharm. Bull. 1979, 27, 2760. (c) Enders, D.; Eichenauer, H. Chem. Ber. 1980, 112, 2933. (d) Whitesell, J. K.; Whitesell, M. A. J. Org. Chem. 1977, 42, 377. (e) Meyers, A. I.; Williams, D. R.; Erickson, G. W.; White, S.; Drulinger, M. J. Am. Chem. Soc. 1981, 103, 3081.

^{(3) (}a) Enders, D.; Eichenauer, H. Angew. Chem., Int. Ed. Engl. 1979, 18, 397. (b) Meyers, A. I.; Williams, D. R.; White, S.; Erickson, G. W. J. Am. Chem. Soc. 1981, 103, 3088

⁽⁴⁾ Brown, H. C.; Zweifel, G. J. Am. Chem. Soc. 1961, 83, 486. (5) Brown, H. C.; Jadhav, P. K.; Mandal, A. K. Tetrahedron 1981, 37,

⁽⁶⁾ Mikhailov, B. M.; Bubnov, Yu. N.; Kiselev, V. G. J. Gen. Chem. USSR 1966, 36, 65. (7) Midland, M. M.; Tramontano, A.; Zderic, S. A. J. Organomet. Chem.

^{1978, 156, 203} (8) Brown, H. C., Jadhav, P. K.; Desai, M. C. J. Am. Chem. Soc. 1982,

^{104, 4303.} (9) Mandal, A. K., Jadhav, P. K.; Brown, H. C. J. Org. Chem. 1980, 45,

⁽¹⁰⁾ Brown, H. C.; Jadhav, P. K. J. Org. Chem. 1981, 46, 5047.
(11) Brown, H. C.; Jadhav, P. K.; Mandal, A. K., accepted for publication in J. Org. Chem.

Table I. Synthesis of Chiral Borinic Esters via Asymmetric Hydroboration Displacement^a

olefin A	olefin B	borinate ester	yield, % (isolated)	bp, °C (mmHg)	$[\alpha]^{23}$ D, deg	ee, %	config
trans-2-butene	1-pentene	ethyl 2-butyl-n-pentylborinate	75	47 (1)	-4.7 (c 7.4, THF)	73	R
1-methylcyclohexene	1-pentene	ethyl <i>trans</i> -(2-methylcyclohexyl)- n-pentylborinate	72	65 (0.01)	-24.7 (c 8.6, THF)	75	1 <i>R</i> , 2 <i>R</i>
1-phenylcyclopentene	ethylene	ethyl <i>trans</i> -(2-phenylcyclopentyl)- ethylborinate	67	85 (0.01)	-26.6 (c 11.8, THF)	100	1 <i>R</i> ,2 <i>R</i>

^a IpcBH₂, prepared from (-)-α-pinene, was used for asymmetric hydroboration.

Table II. Asymmetric Synthesis of Representative Acyclic Ketones via Asymmetric Hydroboration^a-Carbenoidation

olefin A		product ketones						
	olefin B	ketone	yield, % (isolated)	$[\alpha]^{23}$ D, deg	ee, %	config		
trans-2-butene	ethylene	4-methyl-3-hexanone	78 ^b	-19.2 (c 3.67, Et ₂ O)	60°	R		
trans-2-butene	1-pentene	3-methyl-4-nonanone	66	-15.7 (c.5, Et, O)	70^{d}	R		
trans-2-butene	5-hexenylacetate	8-methyl-7-oxo-1-decanol ^e	65	-11.92 (c 5.11, EtOH)	f	R		
1-methylcyclohexene	1-pentene	trans-2-methylcyclohexyl n-pentyl ketone	70	-14.7 (c 5.2, EtOH)	758	1R, 2R		
1-phenylcyclopentene	1-pentene	trans-2-phenylcyclopentyl n-pentyl ketone	78	-103.8 (c 5.2, EtOH)	90g	1R,2S		
1-phenylcyclopentene	h	trans-2-phenylcyclopentyl methyl ketone	66	-106.8 (c 5, EtOH)	90g	1R,2S		

^a IpcBH₂, prepared from (-)-α-pinene, was used for asymmetric hydroboration. ^b GC yield. ^c Enders, D.; Eichenauer, H. Angew. Chem., Int. Ed. Engl. 1979, 18, 397. These authors report $[\alpha]^{23}_{D}$ +30.2° (c 3.7, Et₂O) for 94% ee 4-methyl-3-hexanone. ^d Seebach, D.; Steinmüller, D. Angew. Chem., Int. Ed. Engl. 1968, 7, 619. These authors report maximum rotation for 3-methyl-4-nonanone $[\alpha]^{23}_{D}$ +22.4° (c 5, Et₂O). ^e The acetoxy group is hydrolyzed under DCME oxidation conditions. ^f Attempts to determine % ee by ¹H NMR in the presence of chiral shift reagent Eu(hfc)₃ were unsuccessful. ^g As determined by ¹H NMR in the presence of chiral shift reagent Eu(hfc)₃ by using Varian XL-200 spectrometer. ¹⁸ Methyllithium is used to prepare the trialkylborane containing methyl as one of the alkyl groups.

Reaction of the resulting trialkylborane with acetaldehyde under very mild conditions (25 °C, 1 h) occurs with selective, facile elimination of only the 3-pinanyl group to provide ethyl 2-butyl-n-pentylborinate and α -pinene (eq 1).

The α -pinene eliminated is readily removed by distillation under vacuum. It may be noted that the α -pinene thus recovered is optically pure, $[\alpha]^{23}_D$ -51.5° (neat). Distillation of the residue yields (R)-(-)-ethyl 2-butyl-n-pentylborinate (bp 47 °C (1 mmHg), $[\alpha]^{23}$ _D -4.7° (c 7.4, THF)] in 73% ee as estimated by its oxidation to (R)-(-)-2-butanol. Similarly, we have prepared ethyl trans-(2-methylcyclohexyl)-n-pentylborinate and ethyl trans-(2-phenylcyclopentyl)ethylborinate in 75% and 100% ee, respectively (Table I).

Treatment of the ethyl 2-butyl-n-pentylborinate with α, α -dichloromethyl methyl ether (DCME) and lithium triethylcarboxide, 12 followed by the alkaline hydrogen peroxide oxidation of the intermediate, furnished (R)-(-)-3-methyl-4-nonanone in 70% ee.

In a similar manner, we have prepared several other chiral borinic esters, and converted them, without isolation, into the ketones (Table II) including an alarm pheromone of the ant Manica mutica¹³ (Table II, entry 1).

The synthesis of the borinic acid esters and the corresponding chiral alkyl ketones containing methyl groups is readily achieved as follows. The dialkylborane, obtained by the hydroboration of 1-phenylcyclopentene with IpcBH2, was methanolyzed and the borinate ester in n-pentane treated with methyl lithium at -78°C. The "ate" complex, on warming to room temperature (25 °C), precipitated lithium methoxide, forming the trialkylborane bearing methyl as one of the alkyl groups. 14 The trialkylborane then on successive treatment with acetaldehyde, DCME, 12 and oxidation with alkaline hydrogen peroxide provided trans-2phenylcyclopentyl methyl ketone in 90% ee.

The following experimental procedure is representative. 15 IpcBH₂ of 100% optical purity was prepared from (-)- α -pinene¹⁶ ($[\alpha]^{23}_D$ -48.7° (neat), 94.9% ee) following the reported procedure. 9.17 To a 40-mL solution of 0.75 M (30 mmol) IpcBH₂ at -25 °C was added 4.4 mL (30 mmol) of 1-phenylcyclopentene, followed by addition of 3.3 mL (30 mmol) of 1-pentene after 48 h at -25 °C. The hydroboration of 1-pentene was complete after stirring for 6 h at -25 °C (¹¹B NMR δ +83). The trialkylborane was then treated with 3.5 mL (60 mmol) of acetaldehyde at 0 °C. The formation of borinate was complete after 3.5 h at 0 °C. The excess acetaldehyde was pumped off (25 °C (14 mmHg), 1 h), the flask filled with nitrogen, and the residue dissolved in THF (25 mL). The reported procedure 12 was followed for conversion of the borinate to the ketone.

The method provides a convenient procedure for the general synthesis of acyclic chiral ketones in a very high enantiomeric purities. The high asymmetric induction realized in the asymmetric hydroboration reaction is retained in the carbon-carbon bond-forming reaction. Even though the chiral center is in the α position to the keto group, there is only 2-6% racemization under alkaline conditions utilized for the hydrogen peroxide oxidation. The unique advantage of the present method over the known enantioselective alkylation procedures is its application to the asymmetric synthesis of ketones containing two chiral centers (Table I, entries 3-6). Moreover, ketones with chiral centers of opposite configuration can be readily synthesized by using IpcBH₂ derived from (+)- α -pinene. The simplicity of the method is evidenced by joining two alkyl groups from two olefinic fragments into a ketone in a one-pot synthesis via this asymmetric hydro-

⁽¹²⁾ Carlson, B. A.; Brown, H. C. J. Am. Chem. Soc. 1973, 95, 6876. (13) Fales, H. M.; Blum, M. S.; Crewe, R. M.; Brand, J. M. J. Insect Physiol. 1972, 18, 1077.

⁽¹⁴⁾ Kramer, G. W.; Brown, H. C. J. Organomet. Chem. 1974, 73, 1.
(15) For handling air- and moisture-sensitive compounds, see: Brown, H. C.; Kramer, G. W.; Levy, A. B.; Midland, M. M. "Organic Syntheses via Boranes"; Wiley-Interscience: New York, 1975, p 191.

^{(16) (-)-} α -Pinene was prepared by the isomerization of (-)- β -pinene using the literature procedure: Brown, C. A. Synthesis 1978, 754.
(17) Brown, H. C.; Schwier, J. R.; Singaram, B. J. Org. Chem. 1978, 43,

boration-carbenoidation-oxidation reaction. The chiral auxiliary, α -pinene, can be readily recovered and recycled, making the asymmetric synthesis exceptionally efficient. With the increasing knowledge of organoboranes, the asymmetric synthesis of chiral products via carbon-carbon bond formation has now become more attractive. We are continuing to explore asymmetric synthesis via chiral organoboranes.

(18) The Varian XL-200 spectrometer was purchased with funds from NSF Grant CHE-8004246. This support is gratefully acknowledged.

Isolation and Structure of Bryostatin 1¹

George R. Pettit,* Cherry L. Herald, Dennis L. Doubek, and Delbert L. Herald

Cancer Research Institute and Department of Chemistry Arizona State University, Tempe, Arizona 85287

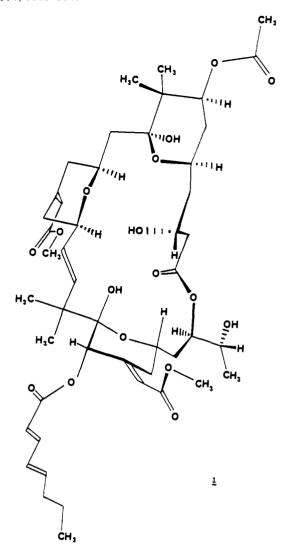
Edward Arnold and Jon Clardy

Spencer T. Olin Chemical Research Laboratories Cornell University, Ithaca, New York 14853

Received June 9, 1982

Marine animals of the phylum Ectoprocta (usually termed Bryozoa or Polyzoa) are colonial filter-feeders and each member (polypide) is enclosed in a separate unit (zooecium). Because of their superficial appearance Bryozoa are commonly known as sea-mats and false corals.² The genus Bugula³ contains very prominent mosslike colonies, and Bugula neritina (Linnaeus) is well-known for its ability to attach to ship hulls.4 Our initial report⁵ that certain Bryozoa such as B. neritina L. contain anticancer constitutents, preliminary study of an adrenochrome-like pigment in the same species,6 and isolation of indoles such as flustramines A and B from Flustra foliacea7 appear to represent the only prior chemical investigations of Bryozoan metabolites.

We now report the structure of a remarkable⁸ anticancer constituent of Bugula neritina designated bryostatin 1. The study began in 1968 with a Gulf of Mexico collection and has recently culminated in the structural elucidation of bryostatin 1 (1) by crystallographic and spectroscopic techniques. The biological activity of bryostatin 1 (1) is noteworthy. In the murine P388 lymphocytic leukemia (PS system) macrocyclic lactone 1 shows 52-96% life extension at 10-70 μ g/(kg/injection dose) levels and an ED₅₀ of 0.89 μ g/mL against the P388 in vitro cell line.


An initial methylene chloride extract prepared from 500 kg of wet animals was further fractioned by the solvent partition se-

(2) Woollacott, R. M., Zimmer, R. L., Eds., "Biology of Bryozoans";

Salissures, 4th 1977.

(5) Pettit, G. R.; Day, J. F.; Hartwell, J. L.; Wood, H. B. Nature (London) 1970, 227, 962-963

(6) Villela, G. G. Proc. Soc. Exptl. Biol. Med. 1948, 68, 531-533.

guence 9:1 \rightarrow 4:1 methanol-water with ligroin \rightarrow carbon tetrachloride. The carbon tetrachloride fraction (214 g) was purified by column chromatography using both Sephadex LH-20 and silica gel monitored by bioassay (PS system). Recrystallization from methylene chloride-methanol gave crystals of bryostatin 1 (1): melting at 230–235 °C. TLC (silica gel) R_f 0.7 (9:1 CH₂Cl₂-CH₃OH); EI MS m/z 886 (M-H₂O, C₄₇H₆₆O₁₆), exact mass 886.4376 amu (calcd. 886.4351 for $C_{47}H_{66}O_{16}$); FAB MS m/z904 (M); $[\alpha]^{25}_D$ + 34.1° (c = 0.044, CH₃OH); UV (CH₃OH) λ_{max} 233 nm (ϵ 25 700) and 263 (ϵ 28 700); IR (KBr) 3470, 3400, 2970, 2950, 1735, 1716, 1700, 1640, 1600, 1433, 1385, 1365, 1245, 1160, 1100, 1080, 1000 cm⁻¹. Detailed high-resolution (400 MHz) NMR data has been included in a subsequent report.¹¹

Stout parallelepiped crystals were obtained from slow mixing of a layered solution of bryostatin 1 in methylene chloride under methanol. When maintained in the mother liquor, these crystals were found to belong to space group $P2_12_12_1$ with a = 21.782(5), b = 20.428 (4) and c = 23.664 (6) Å and Z = 8. As the crystals dried, the c axis appeared to halve, and the relatively poor diffraction pattern conformed to $P2_12_12_1^{12}$ A total of 5464 reflections was collected at -100 °C by using 1° ω scans and graphite-monochromated Mo K α (0.71069 Å) radiation. Of these data, 3553 (65%) were judged observed ($|F_o| > 3\sigma(F_o)$) and used in subsequent calculations. By means of the program system

⁽¹⁾ Contribution 86 of the series "Antineoplastic Agents"; for part 85 refer to: Pettit, G. R.; Paull, K. D.; Herald, C. L.; Herald, D. L.; Riden, J. R., submitted for publication in Can. J. Chem.

Academic Press: New York, 1977.
(3) Day, J. H. "A Guide to Marine Life on South African Shores"; Balkema: Cape Town, 1974; p 123. One type (avicularium) of Bugula neritina L. polypide resembles the beak of a bird and by closing one jaw against the other is able to protect the colony from uninvited encroachment. Such avicularia are a common component of B. neritina L.

(4) Benson, P. H.; Moncreiff, R. W. C. R. Congr. Int. Corros. Mar.

⁽⁷⁾ Carlé, J. S.; Christopherson, C. J. Org. Chem. 1980, 45, 1586-1589. Carlé, J. S.; Christopherson, C. J. Org. Chem. 1981, 46, 3440-3448. Wulff, P., Carlé, J. S.; Christophersen, C. J. Chem. Soc., Perkin Trans. 1 1981, 2895; Comp. Biochem. Physiol. B 1982, 71B, 525, 523.

⁽⁸⁾ Of the presently known cyclic ionophores only the Streptomyces griseus component aplasmomycin seems distantly related to bryostatin 1: Okami, Y.; Okazaki, T.; Kitahara, T.; Umezawa, H. J. Antibiot. 1976, 29, 1019. Nakamura, H.; Iitaka, Y.; Kitahara, T.; Okazaki, T.; Okami, Y. J. Antibiot.

⁽⁹⁾ Schmidt, J. M.; Pettit, G. R. Experientia 1978, 34, 659-660.

⁽¹⁰⁾ Pettit, G. R.; Ode, R. H. "Biosynthetic Products for Cancer Chemotherapy"; Plenum Press: New York, 1979; Vol. 3, p 59.
(11) Pettit, G. R.; Herald, C. L.; Kamano, Y.; Gust, D.; Aoyagi, R. J. Nat.

Prod., in press.

⁽¹²⁾ A similar type of transformation has been observed for the hydrochloride of gramicidin S: Hodgkin, D. C.; Oughton, B. M. Biochem. J. 1957, 65, 752-756.